A Selective Synthesis of 4-Aminobiphenyl-N²-deoxyguanosine Adducts

Susanne Scheer, Thomas Steinbrecher, and Gernot Boche

Fachbereich Chemie der Universitat, Marburg, Germany

A selective synthesis of N^2 -deoxyguanosine adducts derived from 4-aminobiphenyl (ABP) is described. The reactions of O^2 -trifluoromethylsulfonyl- O^6 -allyl-3',5'-O-bis(tert-butyldimethylsilyl)-2'-deoxyxanthosine with 3-amino-4-acetaminobiphenyl and 4-hydrazinobiphenyl, respectively, are the key steps. Successive removal of the protecting groups from the protected adducts leads to the free adducts 3-(deoxyguanosine- N^2 -yl)-acetyl-ABP and N-(deoxyguanosyl- N^2 -yl)-ABP, respectively. — Environ Health Perspect 102(Suppl 6):151–152 (1994)

Key words: carcinogenic aromatic amines, 4-aminobiphenyl-N²-deoxyguanosine adducts; C-2 activated purine deoxyribonucleosides

Introduction

Electrophilic metabolites of aromatic amines like 4-aminobiphenyl (ABP) form preferentially deoxyguanosine adducts upon reaction with DNA. The major adducts are N-(deoxyguanosine-C-8-yl)-ABP (C-8-dG-ABP) 1 and the N-acetylated C-8-dG-AABP 2. Minor adducts are 3-(deoxyguanosine- N^2 -yl)-acetyl-ABP (N^2 -dG-3-AABP) 3 and N-(deoxyguanosine- N^2 -yl)-ABP (N^2 -dG-N-ABP) 4 (1,2) (Figure 1).

In connection with our program aimed at the synthesis of adducts of purine bases, we were interested in a selective synthesis of N^2 -deoxyguanosine (dG) adducts of arylamines. Strategically, two routes can be envisaged (Figure 1): amination of dG with electrophiles such as O-2,6-dichlorobenzoyl-N-acetyl-N-(4-biphenyl)hydroxylamine (3), or O-acetyl-N-(4-biphenyl)hydroxylamine (4) (bond formation A); this protocol, however, leads mostly to adduct formation at C-8 of the purine (3,4) and a substitution reaction of an electrophilic, C-2 activated nucleoside with nucleophilic arylamines (arylhydrazines) R'-NH₂ (bond formation B). Recently Lee et al. (5) reported on the reaction of the electrophilic O^2 -2-fluoro- O^6 -(p-nitrophenylethyl)-2'-deoxyinosine with an arylmethylamine. Based on our experience with the synthesis of alkylated N^2 -deoxyguanosine derivatives, we selected the fully protected O^2 -trifluoromethanesulfonyl- O^6 -allyl-3',5'-bis(tert-butyldimethylsilyl)-2'-deoxyxanthosine 5 (6), which has the better leaving group at the C-2 position of the purine moiety (Table 1).

Reaction of the activated deoxyxanthosine 5 with 3-amino-4-acetaminobiphenyl 6 led to a 30% yield of the corresponding protected N^2 -deoxyguanosine adduct 10. We confirmed this type of reaction with 1,2-diaminobenzol 7 to give 11 (Table 1). Due to the lack of the acetyl group in 7, its reaction with 5 was much faster than that of 5 with 6; also 11 was formed in higher yields than 10. The other structural type of N^2 -deoxyguanosine adduct was accessible by reacting 5 with the hydrazine 8 leading

to the protected adduct 12 in 77% yield. In the same manner the fluorene-derived hydrazine 9 reacted with 5 to give the protected adduct 13 in 69% yield.

To demonstrate the facile removal of the protecting groups in adducts like 10 to 13, the protected adduct 10 was first reacted with tetrabutylammoniumfluoride (TBAF) to remove the *tert*-butyldimethylsilyl groups, and then with Wilkinson's catalyst (Ph₃P)₃RhCl to remove the allyl group to give the free ABP adduct 3 in 50% yield. Similarly, the protected adduct 12 was transformed into the free adduct 4 in 40% yield.

In summary, the preceding protocol allows the selective synthesis of N^2 -dG adducts derived from aromatic amines that otherwise are only accessible in very low yields and together with C-8 adducts.

1:R=H

2 : R = Ac

Figure 1. N^2 -Deoxyguanosine adducts derived from 4-aminobiphenyl.

This paper was presented at the Fifth International Conference on Carcinogenic and Mutagenic *N*-Substituted Aryl Compounds held 18–21 October 1992 in Würzburg, Germany.

T.Steinbrecher is grateful to the Deutsche Forschungs gemeinschaft for a postdoctoral grant.

Address correspondence to Gernot Boche, Fachbereich Chemie der Universitat, Hans-Meerwein-Straβe, D-35032 Marburg, Germany. Telephone 06421 282030. Fax 06421 285547.

Table 1. Reaction conditions and yields for the reactions of the activated deoxyxanthosine 5 with the arylamines 6 and 7, and the arylhydrazines 8 and 9, respectively.

Arylamine or arylhydrazine <i>RNH</i> ²	Reaction time and temperature	Yields of the fully protected adducts
6 AcNH NH2	3 days, 80°C	30% of 10
7 H ₂ N NH ₂	3 days, 20°C	70% of 11
8 H ₂ NNH	14 days, 20°C	77% of 12
9 H ₂ NNH	14 hr, 20°C	69% of 13

Materials and Methods

Chemicals

3-Amino-4-acetaminobiphenyl 6 is accessible by catalytic hydrogenation of 3-nitro-4-acetaminobiphenyl (7) with Pd/C in ethanol in quantitative yield. 4-Hydrazinobiphenyl 7 was synthesized according to Müller (8).

Synthesis of the Protected Arylamine and Arylhydrazine N^2 -deoxyguanosine Adducts 10 to 13

100 mg (0.13 mmole) of the hypoxanthine derivative 5 was dissolved in 5 ml DMF

and stirred with a 10-fold excess of arylamine 6 (7) or arylhydrazine 8 (9). The reaction was monitored by TLC. After completion, the solvent was evaporated under vacuum and the crude product was purified by flash chromatography using a mixture of petrol ether and ethyl acetate (3:1, vol/vol).

Desilylation of 10 and 12

The disilyl compounds (0.1 mmole) were stirred at room temperature for 1.5 hr with TBAF (1.1 M solution in THF, 4 equiv). Then the mixture was evaporated to dryness. The resulting crude products were purified

by flash chromatography using a mixture of CHCl₃ and MeOH (9:1, vol/vol).

Deallylation of the Desilylated 10 and 12

The allyl-protected adducts (0.1 mmole) were refluxed in 10 ml ethanol to which a few drops of water were added in the presence of a catalytic amount of $(Ph_3P)_3RhCl$. The reactions were monitored by TLC. After completion the solvent was evaporated under vacuum. The crude products were purified by recrystallization from water/ethanol (1:1, vol/vol) (3), and by chromatography (silica gel; $CHCl_3/CH_3OH$, 8:2, vol/vol) (4). Yields: $10 \rightarrow 3:50\%$; $12 \rightarrow 4:40\%$.

Yields: $10 \rightarrow 3:50\%$; $12 \rightarrow 4:40\%$. **3-(Deoxyguanosine-N²-yl)-4-acety-laminobiphenyl 3.** ¹H-NMR (400 MHz, d₆-DMSO, D₂O) δ [ppm] 8.51 (s, 1H, H₂) 8.08 (s, 1H, purine) 7.68 (d, 2H, H₂,H₆) 7.50 (pseudo-t, 2H, H₃,, H₅) 7.37 (pseudo-s, 2H, H₅, H₆) 7.35 (t, 1H, H₄) 6.26 (pseudo-t, 1H, H₁,) 4.39 (m, 1H, H₃,) 3.85 (m, 1H, H₄,) 3.46–3.40 (m, 2H, H₅,, H₅,, H₅,) 2.60–2.57 (m, 1H, H₂,) 2.26–2.22 (m, 1H, H₂,,****) 2.11 (s, 3H, OAc).

REFERENCES

- Beland FA, Kadlubar FF. Formation and persistence of arylamine DNA adducts in vivo. Environ Health Perspect 62:19-30 (1985).
- Gupta RC, Dighe NR. Formation and removal of DNA adducts in rat liver treated with N-hydroxy derivatives of 2acetylaminofluorene, 4-acetylaminobiphenyl, and 2-acetaminophenanthrene. Carcinogenesis 5:343–349 (1984).
- 3. Underwood GR, Price MF, Shapiro R. A new synthetic route to nucleotide adducts derived from *N*-acetylated and unacetylated 4-aminobiphenyl. Carcinogenesis 9:1817–1821 (1988).
- 4. Famulok M, Bosold F, Boche G. Synthese von O-acetyl-N-(4-biphenylyl)hydroxylamin, einem entscheidenden metaboliten des carcinogenen 4-aminobiphenyls, und seine reaktion mit desoxyguanosin. Angew Chem 101:349–350 (1989).
- 5. Lee H, Hinz M, Stezowski JJ, Harvey RG. Synthesis of poly-

- cyclic aromatic hydrocarbon nucleoside and oligonucleotide adducts specifically alkylated on the amino functions of deoxyguanosine and deoxyadenosine. Tetrahedron Lett 31:6773–6776 (1990).
- Steinbrecher T, Wameling C, Oesch F, Seidel A. Die Trifluormethansulfonatfunktion als neue Aktivierung der C2-Position am Purin: Synthese von N²-alkylierten Desoxyguanosinen. Angew Chem 105:404–405 (1993).
- 7. Fichter F, Sulzberger A. Über das Phenylbenzochinon und einige Derivate des Biphenyls. Chem Ber 37:879–884 (1904).
- Muller H. Über p-Hydrazinodiphenyl. Chem Ber 27:3105-3108 (1894).
- 9. Corey EJ, Suggs J.W. Selective cleavage of allylethers under mild conditions by transition metal reagents. Org Chem 38:3224 (1973).